
Automatic
Labeling/Annotation of
Image and Video Data
for Feature Extraction

Chief Architect - Jeff Kinard

Project Manager - Sam Hassebroek

Meeting Facilitator - Michael Boyle

Test Engineer - Dylan Hodge

Report Manager - Dylan Smith

Meeting Scribe - Mark Endeshaw

Client - Dr. Ali Jannesari

Advisor - Chandan Kumar

Project Vision

• Most Computer Vision (CV) projects revolve around training a Machine

Learning (ML) model to classify images or objects in images. This requires an

annotated image dataset that, historically, must be carefully compiled by hand.

• Our project seeks to bypass the inefficiency of annotating image data by hand

through an automated approach.

• We will be developing a ML algorithm to take a set of unlabeled images and

output a COCO-formatted annotation file with all the annotations and labels for

object masks found within each image in the dataset.

Example Annotated Image

Functional Requirements

• Algorithm to automatically annotate all objects from any image

• Extension of the algorithm to annotate objects from video

• Further extension to include object masking

• Backup algorithm to annotate objects missed by the main algorithm

• Method of validating the result for each algorithm

Non-functional requirements

• Well-documented code and technical documents

• Ensure same dataset produces similar output if rerun (consistency)

• Minimize loss as much as possible

• Test out any possible bugs

• Use cutting-edge techniques and methodology

Technical and/or other constraints

• Since this is a research-based project and entirely theoretical, we have the
ability to gain any compute resources we may need to complete this
project.

Market Survey

• Current methods include similar feature extraction using CNN’s

• Lack contrastive component

• Other methods involve allowing a CNN to extract the blobs

• Only objects model is trained on will be accurately extracted (<1000 classes)

Conceptual Design Diagram

Crop out all

objects from

each image

Train ML

model to extract

feature vectors

from cropped

objects

Cluster feature

vectors into

groups of

similar objects

Prompt user to

classify each

group

Create COCO-

style annotation

file

Components

I. Image Processing
• Edge Detection

• Blob Extraction

• Cropping

II. Contrastive Learning
• Build 2 Mask R-CNN models in parallel (w/o head)

• Develop loss function for training

• Backpropagate loss to both networks

III. Dimensionality Reduction
• Use t-SNE or similar algorithm to reduce dimension from 1000 to 2 (or 3)

Components (cont.)

IV. Clustering

• K-based clustering algorithm

V. Classification

• Prompt user for labels

• Associate labels to masks accordingly

VI. Labeling

• Script to convert masks and labels in memory to COCO file

Risk Mitigation Plan

• Our project is using many pre-built parts helping to minimize our work

and thus our potential error.

• We conducted research to build upon what is currently done and known.

• Weekly meetings with our advisor are held to ensure we have correct

ideas and are on the correct track.

• Benchmarking against manual and pre-trained data to ensure that our

goals are met.

System Design

• Our design is built upon a ML-based pipeline and written in python

• We will use the PyTorch framework to build, train and output the CNN

used for feature extraction

• A pretrained Mask R-CNN model (with classifier layers removed) will

serve as the backbone architecture for our feature vector extraction

System Diagram

Prototype Implementations

• We currently do not have a prototype for the proposed design

• We have tested our ground-truth dataset using Mask R-CNN and Faster R-
CNN models

• The Faster R-CNN in particular saw mAP scores from 0.7-0.8 @ IoU=0.5

• The Mask R-CNN had lower scores (<0.5 mAP), but looked good upon visual
inspection

• Discrepancies in accuracy most likely occur due to limited sample size of most
classes

Mask R-CNN

Faster R-CNN

Future Prototype Implementations

• All the iterations will serve as prototypes as our project will continually
change and evolve as we work.

• Each implementation will be tested and evaluated for its strengths and
weakness.

• New Prototypes will be built upon the previous ones to correct problems
and to improve the overall product.

Fall
Semester
Schedule

Spring
Semester
Schedule

Task-wise Milestones

• Edge Detection/Blob extraction Algorithms

• Extracts object blobs within 90% accuracy when compared to ground-truth

• Contrastive learning model

• Minimizes loss to as close to 0 as possible

• Clustering algorithm

• Create consistent groups of feature vectors

• Labels-to-COCO script

• Create correctly-formatted COCO annotations file

• Documentation

• Ensure code is documented in its entirety

Overall milestones

• Assemble entire pipeline with tested components

• Get accuracy of model to >0.9 preferably (or as high as possible)

• Ensure model works on new dataset

• Requires visual inspection

Testing Plan Description

• Since our project is largely research-based, testing is difficult

• Test to make sure the pipeline runs successfully

• Ensure the output of the pipeline is in our required format

• After running the pipeline, test the output against standard accuracy

metrics

• Test to see how well our pipeline compares to other approaches of the

same problem

Unit/Interface Testing

• For unit testing, we will manually observe each individual step of the pipeline and
ensure that each step is performing as intended

• For image processing, we will observe the output to confirm images are processed and
cropped correctly

• For the contrastive learning model stage, we will compare several feature vectors that
represent similar object instances and ensure that the vectors have similar data

• For dimensionality reduction, we will transform the data created from the vectors and
visualize it to see if it is possible to create clusters from it

Unit/Interface Testing (cont.)

• When the vectors are clustered, we will look at them to make sure
objects in a cluster are clustered correctly.

• When the objects are labeled, we will compare them against our ground
truth labels to ensure that they have been labeled correctly

Acceptance Testing

• After running through all the steps, we will make sure the pipeline ran as
intended

• We will compare the results of the output to pre-trained algorithms that
we have developed

• We will use mAP (Mean Average Precision) scores to determine the
accuracy of our developed pipeline

Conclusions

• We have gone through extensive research on image annotation

• We have generated the ground-truth dataset

• Our design has been finalized for implementation next semester.

• Next semester we will build out and test our project against the baseline

we have established

