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Project Vision

• Most Computer Vision (CV) projects revolve around training a Machine 

Learning (ML) model to classify images or objects in images. This requires an 

annotated image dataset that, historically, must be carefully compiled by hand.

• Our project seeks to bypass the inefficiency of annotating image data by hand 

through an automated approach.

• We will be developing a ML algorithm to take a set of unlabeled images and 

output a COCO-formatted annotation file with all the annotations and labels for 

object masks found within each image in the dataset.



Example Annotated Image



Functional Requirements 

• Algorithm to automatically annotate all objects from any image

• Extension of the algorithm to annotate objects from video

• Further extension to include object masking 

• Backup algorithm to annotate objects missed by the main algorithm

• Method of validating the result for each algorithm 



Non-functional requirements 

• Well-documented code and technical documents

• Ensure same dataset produces similar output if rerun (consistency)

• Minimize loss as much as possible

• Test out any possible bugs

• Use cutting-edge techniques and methodology



Technical and/or other constraints

• Since this is a research-based project and entirely theoretical, we have the 
ability to gain any compute resources we may need to complete this 
project.



Market Survey

• Current methods include similar feature extraction using CNN’s

• Lack contrastive component

• Other methods involve allowing a CNN to extract the blobs

• Only objects model is trained on will be accurately extracted (<1000 classes)



Conceptual Design Diagram
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Components

I. Image Processing
• Edge Detection

• Blob Extraction

• Cropping

II. Contrastive Learning
• Build 2 Mask R-CNN models in parallel (w/o head)

• Develop loss function for training

• Backpropagate loss to both networks

III. Dimensionality Reduction
• Use t-SNE or similar algorithm to reduce dimension from 1000 to 2 (or 3)



Components (cont.)

IV. Clustering

• K-based clustering algorithm

V. Classification

• Prompt user for labels

• Associate labels to masks accordingly

VI. Labeling

• Script to convert masks and labels in memory to COCO file



Risk Mitigation Plan

• Our project is using many pre-built parts helping to minimize our work 

and thus our potential error.

• We conducted research to build upon what is currently done and known.  

• Weekly meetings with our advisor are held to ensure we have correct 

ideas and are on the correct track. 

• Benchmarking against manual and pre-trained data to ensure that our 

goals are met. 



System Design 

• Our design is built upon a ML-based pipeline and written in python

• We will use the PyTorch framework to build, train and output the CNN 

used for feature extraction  

• A pretrained Mask R-CNN model (with classifier layers removed) will 

serve as the backbone architecture for our feature vector extraction



System Diagram 



Prototype Implementations 

• We currently do not have a prototype for the proposed design

• We have tested our ground-truth dataset using Mask R-CNN and Faster R-
CNN models

• The Faster R-CNN in particular saw mAP scores from 0.7-0.8 @ IoU=0.5

• The Mask R-CNN had lower scores (<0.5 mAP), but looked good upon visual 
inspection

• Discrepancies in accuracy most likely occur due to limited sample size of most 
classes



Mask R-CNN



Faster R-CNN 



Future Prototype Implementations 

• All the iterations will serve as prototypes as our project will continually 
change and evolve as we work.

• Each implementation will be tested and evaluated for its strengths and 
weakness.

• New Prototypes will be built upon the previous ones to correct problems 
and to improve the overall product.
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Task-wise Milestones

• Edge Detection/Blob extraction Algorithms

• Extracts object blobs within 90% accuracy when compared to ground-truth

• Contrastive learning model

• Minimizes loss to as close to 0 as possible

• Clustering algorithm

• Create consistent groups of feature vectors

• Labels-to-COCO script

• Create correctly-formatted COCO annotations file

• Documentation

• Ensure code is documented in its entirety



Overall milestones

• Assemble entire pipeline with tested components

• Get accuracy of model to >0.9 preferably (or as high as possible)

• Ensure model works on new dataset

• Requires visual inspection 



Testing Plan Description

• Since our project is largely research-based, testing is difficult

• Test to make sure the pipeline runs successfully

• Ensure the output of the pipeline is in our required format

• After running the pipeline, test the output against standard accuracy 

metrics

• Test to see how well our pipeline compares to other approaches of the 

same problem



Unit/Interface Testing 

• For unit testing, we will manually observe each individual step of the pipeline and 
ensure that each step is performing as intended

• For image processing, we will observe the output to confirm images are processed and 
cropped correctly

• For the contrastive learning model stage, we will compare several feature vectors that 
represent similar object instances and ensure that the vectors have similar data

• For dimensionality reduction, we will transform the data created from the vectors and 
visualize it to see if it is possible to create clusters from it



Unit/Interface Testing (cont.)

• When the vectors are clustered, we will look at them to make sure 
objects in a cluster are clustered correctly.

• When the objects are labeled, we will compare them against our ground 
truth labels to ensure that they have been labeled correctly



Acceptance Testing

• After running through all the steps, we will make sure the pipeline ran as 
intended

• We will compare the results of the output to pre-trained algorithms that 
we have developed

• We will use mAP (Mean Average Precision) scores to determine the 
accuracy of our developed pipeline



Conclusions

• We have gone through extensive research on image annotation

• We have generated the ground-truth dataset

• Our design has been finalized for implementation next semester.

• Next semester we will build out and test our project against the baseline 

we have established


